Recursive least squares background prediction of univariate syndromic surveillance data
نویسندگان
چکیده
منابع مشابه
Recursive least squares background prediction of univariate syndromic surveillance data
BACKGROUND Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. METHODS Previous...
متن کاملKernel Recursive Least Squares
We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm. Our Kernel-RLS algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum meansquared-error regressor. Sparsity (and therefore regularization) of the solution is achieved by an explicit greedy sparsification proces...
متن کاملRecursive Least Squares Estimation
We start with estimation of a constant based on several noisy measurements. Suppose we have a resistor but do not know its resistance. So we measure it several times using a cheap (and noisy) multimeter. How do we come up with a good estimate of the resistance based on these noisy measurements? More formally, suppose x = (x1, x2, . . . , xn) T is a constant but unknown vector, and y = (y1, y2, ...
متن کاملHierarchic Kernel Recursive Least-Squares
We present a new hierarchic kernel based modeling technique for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel based model in a hierarchical structure, such that the weights of a kernel model over each dimension are modeled over the adjacent dimension. We show that the impos...
متن کاملRecursive Least-Squares Estimation in Case of Interval Observation Data
In the engineering sciences, observation uncertainty often consists of two main types: random variability due to uncontrollable external effects, and imprecision due to remaining systematic errors in the data. Interval mathematics is well-suited to treat this second type of uncertainty in, e. g., intervalmathematical extensions of the least-squares estimation procedure if the set-theoretical ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Informatics and Decision Making
سال: 2009
ISSN: 1472-6947
DOI: 10.1186/1472-6947-9-4